Back to Search
Start Over
Phenolic Compounds Contained in Little-known Wild Fruits as Antiadhesive Agents Against the Beverage-Spoiling Bacteria Asaia spp.
- Source :
- Molecules, Vol 22, Iss 8, p 1256 (2017)
- Publication Year :
- 2017
- Publisher :
- MDPI AG, 2017.
-
Abstract
- The aim of the study was to evaluate antioxidant activity and total phenolic content of juice from three different types of fruits: elderberry (Sambucus nigra), lingonberry (Vaccinium vitis-idaea) and cornelian cherry (Cornus mas), and their action against adhesion of bacterial strains of Asaia lannensis and Asaia bogorensis isolated from spoiled soft drinks. The antioxidant profiles were determined by total antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl, DPPH), and ferric-reducing antioxidant power (FRAP). Additionally, total polyphenol content (TPC) was investigated. Chemical compositions of juices were tested using the chromatographic techniques: high-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC-MS). Adhesion properties of Asaia spp. cells to various abiotic materials were evaluated by luminometry, plate count and fluorescence microscopy. Antioxidant activity of fruit juices expressed as inhibitory concentration (IC50) ranged from 0.042 ± 0.001 (cornelian cherry) to 0.021 ± 0.001 g/mL (elderberry). TPC ranged from 8.02 ± 0.027 (elderberry) to 2.33 ± 0.013 mg/mL (cornelian cherry). Cyanidin-3-sambubioside-5-glucoside, cyanidin-3-glucoside, and cyanidin-3-sambubioside were detected as the major anthocyanins and caffeic, cinnamic, gallic, protocatechuic, and p-coumaric acids as the major phenolic acids. A significant linear correlation was noted between TPC and antioxidant capacity. In the presence of fruit juices a significant decrease of bacterial adhesion from 74% (elderberry) to 67% (lingonberry) was observed. The high phenolic content indicated that these compounds may contribute to the reduction of Asaia spp. adhesion.
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 22
- Issue :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0dd8e7ad8f74c95926ca2c1917b20f6
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules22081256