Back to Search Start Over

A multi-classifier system integrated by clinico-histology-genomic analysis for predicting recurrence of papillary renal cell carcinoma

Authors :
Kang-Bo Huang
Cheng-Peng Gui
Yun-Ze Xu
Xue-Song Li
Hong-Wei Zhao
Jia-Zheng Cao
Yu-Hang Chen
Yi-Hui Pan
Bing Liao
Yun Cao
Xin-Ke Zhang
Hui Han
Fang-Jian Zhou
Ran-Yi Liu
Wen-Fang Chen
Ze-Ying Jiang
Zi-Hao Feng
Fu-Neng Jiang
Yan-Fei Yu
Sheng-Wei Xiong
Guan-Peng Han
Qi Tang
Kui Ouyang
Gui-Mei Qu
Ji-Tao Wu
Ming Cao
Bai-Jun Dong
Yi-Ran Huang
Jin Zhang
Cai-Xia Li
Pei-Xing Li
Wei Chen
Wei-De Zhong
Jian-Ping Guo
Zhi-Ping Liu
Jer-Tsong Hsieh
Dan Xie
Mu-Yan Cai
Wei Xue
Jin-Huan Wei
Jun-Hang Luo
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Integrating genomics and histology for cancer prognosis demonstrates promise. Here, we develop a multi-classifier system integrating a lncRNA-based classifier, a deep learning whole-slide-image-based classifier, and a clinicopathological classifier to accurately predict post-surgery localized (stage I–III) papillary renal cell carcinoma (pRCC) recurrence. The multi-classifier system demonstrates significantly higher predictive accuracy for recurrence-free survival (RFS) compared to the three single classifiers alone in the training set and in both validation sets (C-index 0.831-0.858 vs. 0.642-0.777, p

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.0dc0f9c92514591b5800e5499188a06
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-50369-y