Back to Search
Start Over
Machine Learning for Quantum Metrology
- Source :
- Proceedings, Vol 12, Iss 1, p 28 (2019)
- Publication Year :
- 2019
- Publisher :
- MDPI AG, 2019.
-
Abstract
- Phase estimation represents a significant example to test the application of quantum theory for enhanced measurements of unknown physical parameters. Several recipes have been developed, allowing to define strategies to reach the ultimate bounds in the asymptotic limit of a large number of trials. However, in certain applications it is crucial to reach such bound when only a small number of probes is employed. Here, we discuss an asymptotically optimal, machine learning based, adaptive single-photon phase estimation protocol that allows us to reach the standard quantum limit when a very limited number of photons is employed.
- Subjects :
- quantum metrology
machine learning
phase estimation
adaptive protocols
General Works
Subjects
Details
- Language :
- English
- ISSN :
- 25043900
- Volume :
- 12
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Proceedings
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0dbf5514cccb40969d2929d3ec5474ff
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/proceedings2019012028