Back to Search Start Over

MRI-based random survival Forest model improves prediction of progression-free survival to induction chemotherapy plus concurrent Chemoradiotherapy in Locoregionally Advanced nasopharyngeal carcinoma

Authors :
Wei Pei
Chen Wang
Hai Liao
Xiaobo Chen
Yunyun Wei
Xia Huang
Xueli Liang
Huayan Bao
Danke Su
Guanqiao Jin
Source :
BMC Cancer, Vol 22, Iss 1, Pp 1-12 (2022)
Publication Year :
2022
Publisher :
BMC, 2022.

Abstract

Abstract Background The present study aimed to explore the application value of random survival forest (RSF) model and Cox model in predicting the progression-free survival (PFS) among patients with locoregionally advanced nasopharyngeal carcinoma (LANPC) after induction chemotherapy plus concurrent chemoradiotherapy (IC + CCRT). Methods Eligible LANPC patients underwent magnetic resonance imaging (MRI) scan before treatment were subjected to radiomics feature extraction. Radiomics and clinical features of patients in the training cohort were subjected to RSF analysis to predict PFS and were tested in the testing cohort. The performance of an RSF model with clinical and radiologic predictors was assessed with the area under the receiver operating characteristic (ROC) curve (AUC) and Delong test and compared with Cox models based on clinical and radiologic parameters. Further, the Kaplan-Meier method was used for risk stratification of patients. Results A total of 294 LANPC patients (206 in the training cohort; 88 in the testing cohort) were enrolled and underwent magnetic resonance imaging (MRI) scans before treatment. The AUC value of the clinical Cox model, radiomics Cox model, clinical + radiomics Cox model, and clinical + radiomics RSF model in predicting 3- and 5-year PFS for LANPC patients was [0.545 vs 0.648 vs 0.648 vs 0.899 (training cohort), and 0.566 vs 0.736 vs 0.730 vs 0.861 (testing cohort); 0.556 vs 0.604 vs 0.611 vs 0.897 (training cohort), and 0.591 vs 0.661 vs 0.676 vs 0.847 (testing cohort), respectively]. Delong test showed that the RSF model and the other three Cox models were statistically significant, and the RSF model markedly improved prediction performance (P 0.05). Conclusion The RSF model may be a potential tool for prognostic prediction and risk stratification of LANPC patients.

Details

Language :
English
ISSN :
14712407
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Cancer
Publication Type :
Academic Journal
Accession number :
edsdoj.0d5af80727c4a359118b6b406638dfa
Document Type :
article
Full Text :
https://doi.org/10.1186/s12885-022-09832-6