Back to Search Start Over

A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation

Authors :
Zina Boussaada
Octavian Curea
Ahmed Remaci
Haritza Camblong
Najiba Mrabet Bellaaj
Source :
Energies, Vol 11, Iss 3, p 620 (2018)
Publication Year :
2018
Publisher :
MDPI AG, 2018.

Abstract

The solar photovoltaic (PV) energy has an important place among the renewable energy sources. Therefore, several researchers have been interested by its modelling and its prediction, in order to improve the management of the electrical systems which include PV arrays. Among the existing techniques, artificial neural networks have proved their performance in the prediction of the solar radiation. However, the existing neural network models don’t satisfy the requirements of certain specific situations such as the one analyzed in this paper. The aim of this research work is to supply, with electricity, a race sailboat using exclusively renewable sources. The developed solution predicts the direct solar radiation on a horizontal surface. For that, a Nonlinear Autoregressive Exogenous (NARX) neural network is used. All the specific conditions of the sailboat operation are taken into account. The results show that the best prediction performance is obtained when the training phase of the neural network is performed periodically.

Details

Language :
English
ISSN :
19961073
Volume :
11
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.0c9aedc552de422d9e6c0fc96d9c610d
Document Type :
article
Full Text :
https://doi.org/10.3390/en11030620