Back to Search
Start Over
Antimicrobial peptides CS-piscidin-induced cell death involves activation of RIPK1/PARP, and modification with myristic acid enhances its stability and tumor-targeting capability
- Source :
- Discover Oncology, Vol 14, Iss 1, Pp 1-14 (2023)
- Publication Year :
- 2023
- Publisher :
- Springer, 2023.
-
Abstract
- Abstract Ovarian cancer (OC) is a highly lethal gynecological malignancy, often diagnosed at advanced stages with limited treatment options. Here, we demonstrate that the antimicrobial peptide CS-piscidin significantly inhibits OC cell proliferation, colony formation, and induces cell death. Mechanistically, CS-piscidin causes cell necrosis by compromising the cell membrane. Furthermore, CS-piscidin can activate Receptor-interacting protein kinase 1 (RIPK1) and induce cell apoptosis by cleavage of PARP. To improve tumor targeting ability, we modified CS-piscidin by adding a short cyclic peptide, cyclo-RGDfk, to the C-terminus (CS-RGD) and a myristate to the N-terminus (Myr-CS-RGD). Our results show that while CS-RGD exhibits stronger anti-cancer activity than CS-piscidin, it also causes increased cytotoxicity. In contrast, Myr-CS-RGD significantly improves drug specificity by reducing CS-RGD toxicity in normal cells while retaining comparable antitumor activity by increasing peptide stability. In a syngeneic mouse tumor model, Myr-CS-RGD demonstrated superior anti-tumor activity compared to CS-piscidin and CS-RGD. Our findings suggest that CS-piscidin can suppress ovarian cancer via multiple cell death forms and that myristoylation modification is a promising strategy to enhance anti-cancer peptide performance. Graphical Abstract
Details
- Language :
- English
- ISSN :
- 27306011
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Discover Oncology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0c2d486335d04fdeab08f6415c6ca75f
- Document Type :
- article
- Full Text :
- https://doi.org/10.1007/s12672-023-00642-1