Back to Search Start Over

Complex Investigation of High Efficiency and Reliable Heterojunction Solar Cell Based on an Improved Cu2O Absorber Layer

Authors :
Laurentiu Fara
Irinela Chilibon
Ørnulf Nordseth
Dan Craciunescu
Dan Savastru
Cristina Vasiliu
Laurentiu Baschir
Silvian Fara
Raj Kumar
Edouard Monakhov
James P. Connolly
Source :
Energies, Vol 13, Iss 18, p 4667 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

This study is aimed at increasing the performance and reliability of silicon-based heterojunction solar cells with advanced methods. This is achieved by a numerical electro-optical modeling and reliability analysis for such solar cells correlated with experimental analysis of the Cu2O absorber layer. It yields the optimization of a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model. Experimental research of N-doped Cu2O thin films was dedicated to two main activities: (1) fabrication of specific samples by DC magnetron sputtering and (2) detailed characterization of the analyzed samples. This last investigation was based on advanced techniques: morphological (scanning electron microscopy—SEM and atomic force microscopy—AFM), structural (X-ray diffraction—XRD), and optical (spectroscopic ellipsometry—SE and Fourier-transform infrared spectroscopy—FTIR). This approach qualified the heterojunction solar cell based on cuprous oxide with nitrogen as an attractive candidate for high-performance solar devices. A reliability analysis based on Weibull statistical distribution establishes the degradation degree and failure rate of the studied solar cells under stress and under standard conditions.

Details

Language :
English
ISSN :
19961073
Volume :
13
Issue :
18
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.0c2d0d31fc1244b4a0f6e9d49fe78dd5
Document Type :
article
Full Text :
https://doi.org/10.3390/en13184667