Back to Search Start Over

The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains

Authors :
De Souza Robson F
Iyer Lakshminarayan M
Aravind L
Source :
Biology Direct, Vol 4, Iss 1, p 25 (2009)
Publication Year :
2009
Publisher :
BMC, 2009.

Abstract

Abstract The Anabaena sensory rhodopsin transducer (ASRT) is a small protein that has been claimed to function as a signaling molecule downstream of the cyanobacterial sensory rhodopsin. However, orthologs of ASRT have been detected in several bacteria that lack rhodopsin, raising questions about the generality of this function. Using sequence profile searches we show that ASRT defines a novel superfamily of β-sandwich fold domains. Through contextual inference based on domain architectures and predicted operons and structural analysis we present strong evidence that these domains bind small molecules, most probably sugars. We propose that the intracellular versions like ASRT probably participate as sensors that regulate a diverse range of sugar metabolism operons or even the light sensory behavior in Anabaena by binding sugars or related metabolites. We also show that one of the extracellular versions define a predicted sugar-binding structure in a novel cell-surface lipoprotein found across actinobacteria, including several pathogens such as Tropheryma, Actinomyces and Thermobifida. The analysis of this superfamily also provides new data to investigate the evolution of carbohydrate binding modes in β-sandwich domains with very different topologies. Reviewers: This article was reviewed by M. Madan Babu and Mark A. Ragan.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
17456150
Volume :
4
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Biology Direct
Publication Type :
Academic Journal
Accession number :
edsdoj.0bf2ff95f2a44e1d8b021939f908dfd9
Document Type :
article
Full Text :
https://doi.org/10.1186/1745-6150-4-25