Back to Search Start Over

Redox regulation of KV7 channels through EF3 hand of calmodulin

Authors :
Eider Nuñez
Frederick Jones
Arantza Muguruza-Montero
Janire Urrutia
Alejandra Aguado
Covadonga Malo
Ganeko Bernardo-Seisdedos
Carmen Domene
Oscar Millet
Nikita Gamper
Alvaro Villarroel
Source :
eLife, Vol 12 (2023)
Publication Year :
2023
Publisher :
eLife Sciences Publications Ltd, 2023.

Abstract

Neuronal KV7 channels, important regulators of cell excitability, are among the most sensitive proteins to reactive oxygen species. The S2S3 linker of the voltage sensor was reported as a site-mediating redox modulation of the channels. Recent structural insights reveal potential interactions between this linker and the Ca2+-binding loop of the third EF-hand of calmodulin (CaM), which embraces an antiparallel fork formed by the C-terminal helices A and B, constituting the calcium responsive domain (CRD). We found that precluding Ca2+ binding to the EF3 hand, but not to EF1, EF2, or EF4 hands, abolishes oxidation-induced enhancement of KV7.4 currents. Monitoring FRET (Fluorescence Resonance Energy Transfer) between helices A and B using purified CRDs tagged with fluorescent proteins, we observed that S2S3 peptides cause a reversal of the signal in the presence of Ca2+ but have no effect in the absence of this cation or if the peptide is oxidized. The capacity of loading EF3 with Ca2+ is essential for this reversal of the FRET signal, whereas the consequences of obliterating Ca2+ binding to EF1, EF2, or EF4 are negligible. Furthermore, we show that EF3 is critical for translating Ca2+ signals to reorient the AB fork. Our data are consistent with the proposal that oxidation of cysteine residues in the S2S3 loop relieves KV7 channels from a constitutive inhibition imposed by interactions between the EF3 hand of CaM which is crucial for this signaling.

Details

Language :
English
ISSN :
2050084X
Volume :
12
Database :
Directory of Open Access Journals
Journal :
eLife
Publication Type :
Academic Journal
Accession number :
edsdoj.0bd7d7f107f1445e8d187383cd53a107
Document Type :
article
Full Text :
https://doi.org/10.7554/eLife.81961