Back to Search
Start Over
A 4D-CBCT correction network based on contrastive learning for dose calculation in lung cancer
- Source :
- Radiation Oncology, Vol 19, Iss 1, Pp 1-15 (2024)
- Publication Year :
- 2024
- Publisher :
- BMC, 2024.
-
Abstract
- Abstract Objective This study aimed to present a deep-learning network called contrastive learning-based cycle generative adversarial networks (CLCGAN) to mitigate streak artifacts and correct the CT value in four-dimensional cone beam computed tomography (4D-CBCT) for dose calculation in lung cancer patients. Methods 4D-CBCT and 4D computed tomography (CT) of 20 patients with locally advanced non-small cell lung cancer were used to paired train the deep-learning model. The lung tumors were located in the right upper lobe, right lower lobe, left upper lobe, and left lower lobe, or in the mediastinum. Additionally, five patients to create 4D synthetic computed tomography (sCT) for test. Using the 4D-CT as the ground truth, the quality of the 4D-sCT images was evaluated by quantitative and qualitative assessment methods. The correction of CT values was evaluated holistically and locally. To further validate the accuracy of the dose calculations, we compared the dose distributions and calculations of 4D-CBCT and 4D-sCT with those of 4D-CT. Results The structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) of the 4D-sCT increased from 87% and 22.31 dB to 98% and 29.15 dB, respectively. Compared with cycle consistent generative adversarial networks, CLCGAN enhanced SSIM and PSNR by 1.1% (p
Details
- Language :
- English
- ISSN :
- 1748717X
- Volume :
- 19
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Radiation Oncology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0bb0f73a67834f43bf36cd67de29ac73
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s13014-024-02411-y