Back to Search
Start Over
Development of an automated artificial intelligence-based system for urogenital schistosomiasis diagnosis using digital image analysis techniques and a robotized microscope.
- Source :
- PLoS Neglected Tropical Diseases, Vol 18, Iss 11, p e0012614 (2024)
- Publication Year :
- 2024
- Publisher :
- Public Library of Science (PLoS), 2024.
-
Abstract
- BackgroundUrogenital schistosomiasis is considered a Neglected Tropical Disease (NTD) by the World Health Organization (WHO). It is estimated to affect 150 million people worldwide, with a high relevance in resource-poor settings of the African continent. The gold-standard diagnosis is still direct observation of Schistosoma haematobium eggs in urine samples by optical microscopy. Novel diagnostic techniques based on digital image analysis by Artificial Intelligence (AI) tools are a suitable alternative for schistosomiasis diagnosis.MethodologyDigital images of 24 urine sediment samples were acquired in non-endemic settings. S. haematobium eggs were manually labeled in digital images by laboratory professionals and used for training YOLOv5 and YOLOv8 models, which would achieve automatic detection and localization of the eggs. Urine sediment images were also employed to perform binary classification of images to detect erythrocytes/leukocytes with the MobileNetv3Large, EfficientNetv2, and NasNetLarge models. A robotized microscope system was employed to automatically move the slide through the X-Y axis and to auto-focus the sample.ResultsA total number of 1189 labels were annotated in 1017 digital images from urine sediment samples. YOLOv5x training demonstrated a 99.3% precision, 99.4% recall, 99.3% F-score, and 99.4% mAP0.5 for S. haematobium detection. NasNetLarge has an 85.6% accuracy for erythrocyte/leukocyte detection with the test dataset. Convolutional neural network training and comparison demonstrated that YOLOv5x for the detection of eggs and NasNetLarge for the binary image classification to detect erythrocytes/leukocytes were the best options for our digital image database.ConclusionsThe development of low-cost novel diagnostic techniques based on the detection and identification of S. haematobium eggs in urine by AI tools would be a suitable alternative to conventional microscopy in non-endemic settings. This technical proof-of-principle study allows laying the basis for improving the system, and optimizing its implementation in the laboratories.
- Subjects :
- Arctic medicine. Tropical medicine
RC955-962
Public aspects of medicine
RA1-1270
Subjects
Details
- Language :
- English
- ISSN :
- 19352727 and 19352735
- Volume :
- 18
- Issue :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS Neglected Tropical Diseases
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0b48772091417d81df91a00e352c99
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.pntd.0012614