Back to Search Start Over

Predicting subjective refraction with dynamic retinal image quality analysis

Authors :
Andrea Gil
Carlos S. Hernández
Ahhyun Stephanie Nam
Varshini Varadaraj
Nicholas J. Durr
Daryl Lim
Shivang R. Dave
Eduardo Lage
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract The aim of this work is to evaluate the performance of a novel algorithm that combines dynamic wavefront aberrometry data and descriptors of the retinal image quality from objective autorefractor measurements to predict subjective refraction. We conducted a retrospective study of the prediction accuracy and precision of the novel algorithm compared to standard search-based retinal image quality optimization algorithms. Dynamic measurements from 34 adult patients were taken with a handheld wavefront autorefractor and static data was obtained with a high-end desktop wavefront aberrometer. The search-based algorithms did not significantly improve the results of the desktop system, while the dynamic approach was able to simultaneously reduce the standard deviation (up to a 15% for reduction of spherical equivalent power) and the mean bias error of the predictions (up to 80% reduction of spherical equivalent power) for the handheld aberrometer. These results suggest that dynamic retinal image analysis can substantially improve the accuracy and precision of the portable wavefront autorefractor relative to subjective refraction.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322 and 81660243
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.0ad6eb81660243258b205f9741621035
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-07786-0