Back to Search
Start Over
A Comparative Study on Physicochemical, Photocatalytic, and Biological Properties of Silver Nanoparticles Formed Using Extracts of Different Parts of Cudrania tricuspidata
- Source :
- Nanomaterials, Vol 10, Iss 7, p 1350 (2020)
- Publication Year :
- 2020
- Publisher :
- MDPI AG, 2020.
-
Abstract
- Green-synthesized silver nanoparticles (SNPs) have great potential for biomedical applications, due to their distinctive optical, chemical, and catalytic properties. In this study, we aimed to develop green-synthesized SNPs from extracts of Cudrania tricuspidata (CT) roots (CTR), stems (CTS), leaves (CTL), and fruit (CTF) and to evaluate their physicochemical, photocatalytic, and biological properties. CTR, CTS, CTL, and CTF extracts were evaluated and compared for their total phenol and flavonoid content, reducing capacity, and antioxidant activity. The results revealed that CTR, CTS, CTL, and CTF extracts have high phenol and flavonoid content, as well as a powerful antioxidant and reducing capacity. CTR and CTS extracts showed the strongest effects. The results from UV-Vis spectra analysis, dynamic light scattering, high-resolution transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy showed the successful formation of CT-SNPs with surface morphology, crystallinity, reduction capacity, capsulation, and stabilization. Synthesized CT-SNPs successfully photocatalyzed methylene blue, methyl orange, rhodamine B, and Reactive Black 5 within 20 min. The CTR- and CTS-SNPs showed better antibacterial properties against different pathogenic microbes (Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Salmonella enteritidis) than the CTL- and CTF-SNPs. CTS- and CTR-SNPs showed the most effective cytotoxicity and antiapoptosis properties in human hepatocellular carcinoma cells (HepG2 and SK-Hep-1). CT-SNPs also seemed to be more biologically active than the CT extracts. The results of this study provide evidence of the establishment of CT extract SNPs and their physicochemical, photocatalytic, and biological properties.
Details
- Language :
- English
- ISSN :
- 10071350 and 20794991
- Volume :
- 10
- Issue :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- Nanomaterials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0ac970d18a9c43acbf509fc8084fb093
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/nano10071350