Back to Search Start Over

Dynamic characterization of water hammer in gangue fly ash slurry pipelines during valve closure

Authors :
Yuxin Hao
Xuepeng Song
Chengshuai Wang
Bowen Fan
Kai Yang
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract In the process of coal-filling mining, the gangue fly-ash slurry (GFS) needs to be transported over a long distance to reach the gobs. The abrupt closure of the valve during the transportation of GFS can result in a water hammer that significantly endangers the stability and safety of the pipeline transport system. To study the fluctuations in pressure induced by abrupt closure of the valve, experiments on the rheological parameters of gangue-coal ash slurry were conducted. Transient numerical simulations were carried out using the computational fluid dynamics method for various valve closing times. The results indicate that, with the increase of slurry concentration, the yield stress of the slurry significantly increases. When the concentration exceeds 76%, the increase in yield stress reaches 38.4% and 35.1%, respectively. Upon valve closure, the internal pressure of the slurry in the pipeline exhibits periodic dynamic oscillations. As the duration of valve closure increases, the frequency of periodic water hammer events decreases. The maximum water hammer pressure caused by valve closure decreases with the increasing distance between the valve and the closure point. At the same time, the intensity of maximum water hammer pressure fluctuations increases with the increase in slurry concentration and flow velocity in the pipeline. The results can provide references for water hammer protection and pipeline selection during the transportation of backfill slurry in mining.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.0ac63775d754c4c9afe3f31a11eb17d
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-62504-2