Back to Search Start Over

Effect of Simulated Cosmic Radiation on Cytomegalovirus Reactivation and Lytic Replication

Authors :
Satish K. Mehta
Douglass M. Diak
Sara Bustos-Lopez
Mayra Nelman-Gonzalez
Xi Chen
Ianik Plante
Stephen J. Stray
Ritesh Tandon
Brian E. Crucian
Source :
International Journal of Molecular Sciences, Vol 25, Iss 19, p 10337 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Human exploration of the solar system will expose crew members to galactic cosmic radiation (GCR), with a potential for adverse health effects. GCR particles (protons and ions) move at nearly the speed of light and easily penetrate space station walls, as well as the human body. Previously, we have shown reactivation of latent herpesviruses, including herpes simplex virus, Varicella zoster virus, Epstein–Barr virus, and cytomegalovirus (CMV), during stays at the International Space Station. Given the prevalence of latent CMV and the known propensity of space radiation to cause alterations in many cellular processes, we undertook this study to understand the role of GCR in reactivating latent CMV. Latently infected Kasumi cells with CMV were irradiated with 137Cs gamma rays, 150 MeV protons, 600 MeV/n carbon ions, 600 MeV/n iron ions, proton ions, and simulated GCR. The CMV copy number increased significantly in the cells exposed to radiation as compared with the non-irradiated controls. Viral genome sequencing did not reveal significant nucleotide differences among the compared groups. However, transcriptome analysis showed the upregulation of transcription of the UL49 ORF, implicating it in the switch from latent to lytic replication. These findings support our hypothesis that GCR may be a strong contributor to the reactivation of CMV infection seen in ISS crew members.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
25
Issue :
19
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.0aa0b86df0a4df799be3d0999432a20
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms251910337