Back to Search Start Over

Characterisation of Banana Plant Growth Using High-Spatiotemporal-Resolution Multispectral UAV Imagery

Authors :
Aaron Aeberli
Stuart Phinn
Kasper Johansen
Andrew Robson
David W. Lamb
Source :
Remote Sensing, Vol 15, Iss 3, p 679 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

The determination of key phenological growth stages of banana plantations, such as flower emergence and plant establishment, is difficult due to the asynchronous growth habit of banana plants. Identifying phenological events assists growers in determining plant maturity, and harvest timing and guides the application of time-specific crop inputs. Currently, phenological monitoring requires repeated manual observations of individual plants’ growth stages, which is highly laborious, time-inefficient, and requires the handling and integration of large field-based data sets. The ability of growers to accurately forecast yield is also compounded by the asynchronous growth of banana plants. Satellite remote sensing has proved effective in monitoring spatial and temporal crop phenology in many broadacre crops. However, for banana crops, very high spatial and temporal resolution imagery is required to enable individual plant level monitoring. Unoccupied aerial vehicle (UAV)-based sensing technologies provide a cost-effective solution, with the potential to derive information on health, yield, and growth in a timely, consistent, and quantifiable manner. Our research explores the ability of UAV-derived data to track temporal phenological changes of individual banana plants from follower establishment to harvest. Individual plant crowns were delineated using object-based image analysis, with calculations of canopy height and canopy area producing strong correlations against corresponding ground-based measures of these parameters (R2 of 0.77 and 0.69 respectively). A temporal profile of canopy reflectance and plant morphology for 15 selected banana plants were derived from UAV-captured multispectral data over 21 UAV campaigns. The temporal profile was validated against ground-based determinations of key phenological growth stages. Derived measures of minimum plant height provided the strongest correlations to plant establishment and harvest, whilst interpolated maxima of normalised difference vegetation index (NDVI) best indicated flower emergence. For pre-harvest yield forecasting, the Enhanced Vegetation Index 2 provided the strongest relationship (R2 = 0.77) from imagery captured near flower emergence. These findings demonstrate that UAV-based multitemporal crop monitoring of individual banana plants can be used to determine key growing stages of banana plants and offer pre-harvest yield forecasts.

Details

Language :
English
ISSN :
15030679 and 20724292
Volume :
15
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.0a7d6299d7214a0ab1a75d603277bff3
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15030679