Back to Search
Start Over
Short-Term Load Forecasting: A Comprehensive Review and Simulation Study With CNN-LSTM Hybrids Approach
- Source :
- IEEE Access, Vol 12, Pp 111858-111881 (2024)
- Publication Year :
- 2024
- Publisher :
- IEEE, 2024.
-
Abstract
- Short-term load forecasting (STLF) is vital in effectively managing the reserve requirement in modern power grids. Subsequently, it supports the grid operator in making effective and economical decisions during the power balancing operation. Therefore, this study comprehensively reviews STLF methods, including time series analysis, regression-based frameworks, artificial neural networks (ANNs), and hybrid models that employ different forecasting approaches. Detailed mathematical and graphical analyses and a comparative evaluation of these methods are provided, highlighting their advantages and disadvantages. Further, the study proposes a hybrid CNN-LSTM model comprised of Convolutional neural networks (CNN) for feature extraction of high dimensional data and Long short-term memory (LSTM) networks to boost the model’s efficiency for temporal sequence prediction. This study assessed the model using a comprehensive dataset from Pakistan’s NTDC national grid. The analysis revealed superior performance in short-term load prediction, achieving enhanced accuracy. For single-step forecasting, the model yielded an RMSE of 538.71, MAE of 371.97, and MAPE of 2.72. In 24-hour forecasting, it achieved an RMSE of 951.94, MAE of 656.35, and MAPE of 4.72 on the NTDC dataset. Moreover, the model has outperformed previous models in comparison using the AEP dataset, demonstrating its superiority in enhancing reserve management and balancing supply and demand in modern electricity networks.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 12
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0a539c8cb848c0b2a2acde3fa3f3ea
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2024.3440631