Back to Search Start Over

Multi-Surrogate Collaboration Approach for Creep-Fatigue Reliability Assessment of Turbine Rotor

Authors :
Lu-Kai Song
Guang-Chen Bai
Source :
IEEE Access, Vol 8, Pp 39861-39874 (2020)
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

The creep-fatigue resistance of turbine rotor seriously affects the reliability performance and service lifetime of aircraft engine. Creep-fatigue reliability assessment is an effective measure to quantify the uncertain creep-fatigue damage and evaluate the creep-fatigue reliable life for turbine rotor. To improve the modeling accuracy and simulation efficiency of creep-fatigue reliability assessment, a multi-surrogate collaboration approach (MSCA) is proposed by absorbing the strengths of the proposed dynamic neural network surrogate (DNNS) into distributed collaborative strategy. The creep-fatigue reliability assessment of a typical turbine rotor is regarded as one case to estimate the presented MSCA with respect to the fluctuations of multi-physical variables and the variabilities of multi-model parameters. The assessment results reveal that the creep-fatigue reliable life of turbine rotor under reliability degree of 0.998 7 is 629 cycles, and the fatigue strength coefficient and holding creep time play a leading role on creep-fatigue reliable life since their effect probabilities of 27 % and 19 %, respectively. Comparison of various methods (direct Monte Carlo simulation, response surface, neural network surrogate, DNNS) shows that the presented MSCA holds high efficiency and accuracy in creep-fatigue reliability assessment of turbine rotor.

Details

Language :
English
ISSN :
21693536
Volume :
8
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.0a41df10dc64452685a42966ad877ded
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2020.2975316