Back to Search
Start Over
Elevated Ripening Temperature Mitigates the Eating Quality Deterioration of Rice in the Lower Grain Position Due to the Improvement of Starch Fine Structure and Properties
- Source :
- Agronomy, Vol 13, Iss 12, p 2944 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Elevated ripening temperature (ET) impacts rice grain quality. In this study, two rice varieties were investigated to evaluate the characterization of starch fine structure and grain eating quality under ET conditions. Rice exposure to ET increased the proportion of large-sized granules and starch granule average size, regardless of grain position. Compared to normal temperature (NT), the amylose content (AM) in the upper grain position (UP) exhibited a significant increase under ET, whereas the contrary results showed a decrease in the lower grain position (LP), and the proportion of shorter amylopectin chains increased under ET in UP or LP, whereas the proportion of long amylopectin chains decreased, resulting in a higher starch gelatinization temperature and enthalpy under ET. For grain position, compared to LP, UP had higher AM and a higher proportion of long amylopectin chains, leading to higher gelatinization enthalpy under ET. For eating quality, we found that ET deteriorated the eating quality of rice compared to NT, and UP had higher eating quality than LP under NT; however, there was a comparable eating quality between UP and LP under ET. Hence, elevated grain filling temperature mitigated the eating quality deterioration of rice grain in LP due to the lower AM and gelatinization enthalpy and the higher proportion of shorter amylopectin chains.
- Subjects :
- rice
high temperature
eating quality
starch fine structure
gelatinization
Agriculture
Subjects
Details
- Language :
- English
- ISSN :
- 20734395
- Volume :
- 13
- Issue :
- 12
- Database :
- Directory of Open Access Journals
- Journal :
- Agronomy
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0a2769c63314f9bbcdf01da279be025
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/agronomy13122944