Back to Search Start Over

Carboxylated Cellulose Nanocrystals Decorated with Varying Molecular Weights of Poly(diallyldimethylammonium chloride) as Sustainable Antibacterial Agents

Authors :
Eliskander Rabia
Beza Tuga
José de Ondarza
Saleen M. Ramos
Edmond Lam
Sabahudin Hrapovic
Yali Liu
Rajesh Sunasee
Source :
Polymers, Vol 15, Iss 4, p 865 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Cationic nanomaterials are promising candidates for the development of effective antibacterial agents by taking advantage of the nanoscale effects as well as other exceptional physicochemical properties of nanomaterials. In this study, carboxylated cellulose nanocrystals (cCNCs) derived from softwood pulp were coated with cationic poly(diallyldimethylammonium chloride) of varying molecular weights. The resulting cationic carboxylated cellulose nanocrystals coated with poly(diallyldimethylammonium chloride) (cCNCs–PDDA) nanomaterials were characterized for their structural and morphological properties using Fourier transform infrared spectroscopy, dynamic light scattering, zeta potential, elemental analysis, transmission electron microscopy, and thermogravimetric analysis. Cationic cCNCs–PDDA were investigated for their antibacterial properties against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli 23934 and Pseudomonas aeruginosa using a bacterial lawn growth inhibition assay. cCNC–PDDA materials displayed marked antibacterial activity, particularly against Gram-positive Staphylococcus aureus. Overall, our results indicated that cCNCs–PDDA could be a potential candidate for antibacterial applications such as antibacterial surfaces or coatings.

Details

Language :
English
ISSN :
20734360
Volume :
15
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Polymers
Publication Type :
Academic Journal
Accession number :
edsdoj.0a1cbb18445425da48c63c425a29019
Document Type :
article
Full Text :
https://doi.org/10.3390/polym15040865