Back to Search Start Over

Research on electromagnetic vibration energy harvester for cloud-edge-end collaborative architecture in power grid

Authors :
Minghao Zhang
Rui Song
Jun Zhang
Chenyuan Zhou
Guozheng Peng
Haoyang Tian
Tianyi Wu
Yunjia Li
Source :
Journal of Cloud Computing: Advances, Systems and Applications, Vol 12, Iss 1, Pp 1-13 (2023)
Publication Year :
2023
Publisher :
SpringerOpen, 2023.

Abstract

Abstract With the deepening of the construction of the new type power system, the grid has become increasingly complex, and its safe and stable operation is facing more challenges. In order to improve the quality and efficiency of power grid management, State Grid Corporation continues to promote the digital transformation of the grid, proposing concepts such as cloud-edge-end collaborative architecture and power Internet of Things, for which comprehensive sensing of the grid is an important foundation. Power equipment is widely distributed and has a wide variety of types, and online monitoring of them involves the deployment and application of a large number of power sensors. However, there are various problems in implementing active power supplies for these sensors, which restrict their service life. In order to collect and utilize the vibration energy widely present in the grid to provide power for sensors, this paper proposes an electromagnetic vibration energy harvester and its design methodology based on a four-straight-beam structure, and carries out a trial production of prototype. The vibration pickup unit of the harvester is composed of polyimide cantilevers, a permanent magnet and a mass-adjusting spacer. The mass-adjusting spacer can control the vibration frequency of the vibration unit to match the target frequency. In this paper, a key novel method is proposed to increase the number of turns in a limited volume by stacking flexible coils, which can boost the output voltage of the energy harvester. A test system is built to conduct a performance test for the prototype harvester. According to the test results, the resonant frequency of the device is $$100\ Hz$$ 100 H z , the output peak-to-peak voltage at the resonant frequency is $$2.56\ V$$ 2.56 V at the acceleration of $$1\ g$$ 1 g , and the maximum output power is around $$151.7\ \mu W$$ 151.7 μ W . The proposed four-straight-beam electromagnetic vibration energy harvester in this paper has obvious advantages in output voltage and power compared with state-of-the-art harvesters. It can provide sufficient power for various sensors, support the construction of cloud-edge-end architecture and the deployment of a massive number of power sensors. In the last part of this article, a self-powered transformer vibration monitor is presented, demonstrating the practicality of the proposed vibration energy harvester.

Details

Language :
English
ISSN :
2192113X
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Cloud Computing: Advances, Systems and Applications
Publication Type :
Academic Journal
Accession number :
edsdoj.0a0be75e5ba44db8ac06dddbdec97fd8
Document Type :
article
Full Text :
https://doi.org/10.1186/s13677-023-00541-4