Back to Search
Start Over
Deep learning-enabled breast cancer endocrine response determination from H&E staining based on ESR1 signaling activity
- Source :
- Scientific Reports, Vol 13, Iss 1, Pp 1-7 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract Estrogen receptor (ER) positivity by immunohistochemistry has long been a main selection criterium for breast cancer patients to be treated with endocrine therapy. However, ER positivity might not directly correlate with activated ER signaling activity, which is a better predictor for endocrine therapy responsiveness. In this study, we investigated if a deep learning method using whole-slide H&E-stained images could predict ER signaling activity. First, ER signaling activity score was determined using RNAseq data available from each of the 1082 breast cancer samples in the TCGA Pan-Cancer dataset based on the Hallmark Estrogen Response Early gene set from the Molecular Signature Database (MSigDB). Then the processed H&E-stained images and ER signaling activity scores from a training cohort were fed into ResNet101 with three additional fully connected layers to generate a predicted ER activity score. The trained models were subsequently applied to an independent testing cohort. The result demonstrated that ER + /HER2- breast cancer patients with a higher predicted ER activity score had longer progression-free survival (p = 0.0368) than those with lower predicted ER activity score. In conclusion, a convolutional deep neural network can predict prognosis and endocrine therapy response in breast cancer patients based on whole-slide H&E-stained images. The trained models were found to robustly predict the prognosis of ER + /HER2- patients. This information is valuable for patient management, as it does not require RNA-seq or microarray data analyses. Thus, these models can reduce the cost of the diagnosis workflow if such information is required.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 13
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.09eacd0448934899945a4560e9f5e124
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-023-48830-x