Back to Search Start Over

New understanding of the main active substances and the promotion mechanism in the degradation of phenol by Fe–C micro-electrolysis systems

Authors :
Yulong Zou
Haiqian Zhao
Xiaolong Zhang
Zhonghua Wang
Xue Yang
Xing Zhang
Source :
Water Science and Technology, Vol 90, Iss 2, Pp 649-663 (2024)
Publication Year :
2024
Publisher :
IWA Publishing, 2024.

Abstract

The mechanism of phenol degradation by micro-electrolytic systems can be fully understood by evaluating the oxidation of active substances from the two aspects of phenol bond-breaking and mineralization, and the direction of promoting the generation of active substances is pointed out. In this article, the effects of H2O2, O2-•, ·OH and 1O2 in the degradation of phenol were analyzed using phenol and chemical oxygen demand (COD) removal rates as judgment indicators, respectively. And the addition of C6O8H6 to the micro-electrolysis system was adopted to promote the generation of active substances. The experimental results showed that the active substances which played a dominant effect in the process of phenol bond-breaking and mineralization were changed. While 1O2 is dominant in the bond-breaking of phenol, •OH is dominant in the mineralization of phenol. After adding C6O8H6 (1 mmol/L), the removal rates of phenol and COD were increased by 7.35 and 4.85%, respectively. This was attributed to the autoxidation reaction of C6O8H6 and the continuous supply of H+ while reducing Fe3+ to Fe2+. Additionally, the C6O8H6 regulated the reaction pathway to improve the utilization of H2O2. This study provides a new perspective for the understanding of active substances in micro-electrolysis systems. HIGHLIGHTS The main active substances in the bond-breaking and mineralization are different.; is the main active substance in the phenol bond-breaking process.; •OH is the main active substance in the phenol mineralization process.; C6O8H6 can promote the formation of active substances in the system.; C6O8H6 can promote the Fe2+/Fe3+ cycle and improve the utilization of •OH.;

Details

Language :
English
ISSN :
02731223 and 19969732
Volume :
90
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Water Science and Technology
Publication Type :
Academic Journal
Accession number :
edsdoj.09e8a518b07a4725957ddc1809175e8c
Document Type :
article
Full Text :
https://doi.org/10.2166/wst.2024.244