Back to Search Start Over

Discrete terpyridine-lanthanide molecular and supramolecular complexes

Authors :
Xiujun Yu
Yaqi Hu
Chenxing Guo
Zhi Chen
Heng Wang
Xiaopeng Li
Source :
Supramolecular Materials, Vol 1, Iss , Pp 100017- (2022)
Publication Year :
2022
Publisher :
KeAi Communications Co., Ltd., 2022.

Abstract

Integrating the advantages of terpyridine (tpy) ligands with excellent chromophoric sensitization ability and lanthanides (Lns) with characteristic luminescent and magnetic properties, discrete terpyridine-lanthanide (tpy-Ln) molecular and supramolecular complexes are of great value in many fields and have drawn significant attention from the community of supramolecular chemistry, coordination chemistry and materials science. Compared to the well-documented coordination behavior between transition metals and tpy, the construction of tpy-Ln molecular and supramolecular complexes remains a longstanding challenge due to the high coordination diversity and the lack of stereochemical preference of Lns. Nevertheless, with the advancement of self-assembly strategies, i.e., employing diverse anions as capping components and utilizing secondary auxiliary ligands as well as engineering of tpy ligands, diverse tpy-Ln molecular and supramolecular complexes have been constructed and their potential applications have been explored. This review comprehensively summarizes the progress of discrete tpy-Ln molecular and supramolecular complexes in the past decades, covering the structures of mononuclear, binuclear and multinuclear architectures. Beyond structures, the potential applications of these tpy-Ln complexes are also introduced. This review aims to shed more light on the design and construction of novel discrete tpy-Ln supramolecular complexes and materials with molecular level precision and multiple functions through coordination-driven self-assembly.

Details

Language :
English
ISSN :
26672405
Volume :
1
Issue :
100017-
Database :
Directory of Open Access Journals
Journal :
Supramolecular Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.09db7d027a074b50bd24a8d66bcebe39
Document Type :
article
Full Text :
https://doi.org/10.1016/j.supmat.2022.100017