Back to Search Start Over

Bronchoscopy-Guided High-Power Microwave Ablation in an in vivo Porcine Lung Model

Authors :
Jan Sebek
Steven Goh
Warren L. Beard
David S. Biller
David S. Hodgson
Margaret A. Highland
Abbe Smith
Nicholas Hemphill
Kun-Chang Yu
Renelle A. Myers
Stephen Lam
Henky Wibowo
Punit Prakash
Source :
Biomedicine Hub, Vol 9, Iss 1, Pp 108-117 (2024)
Publication Year :
2024
Publisher :
Karger Publishers, 2024.

Abstract

Introduction: Percutaneous microwave ablation (MWA) is clinically accepted for the treatment of lung tumors and oligometastatic disease. Bronchoscopic MWA is under development and evaluation in the clinical setting. We previously reported on the development of a bronchoscopy-guided MWA system integrated with clinical virtual bronchoscopy and navigation and demonstrated the feasibility of transbronchial MWA, using a maximum power of 60 W at the catheter input. Here, we assessed the performance of bronchoscopy-guided MWA with an improved catheter (maximum power handling of up to 120 W) in normal porcine lung in vivo (as in the previous study). Methods: A total of 8 bronchoscopy-guided MWA were performed (n = 2 pigs; 4 ablations per pig) with power levels of 90 W and 120 W applied for 5 and 10 min, respectively. Virtual bronchoscopy planning and navigation guided transbronchial or endobronchial positioning of the MWA applicator for ablation of lung parenchyma. Following completion of ablations and post-procedure CT imaging, the lungs were harvested and sectioned for gross and histopathologic ablation analysis. Results: Bronchoscopy-guided MWA with applied energy levels of 90 W/5 min and 120 W/10 min yielded ablation zones with short-axis diameters in the range of 20–28 mm (56–116% increase) as compared to ∼13 mm from our previous study (60 W/10 min). Histology of higher-power and previous lower-power ablations was consistent, including a central necrotic zone, a thermal fixation zone with intact tissue architecture, and a hemorrhagic periphery. Catheter positioning and its confirmation via intra-procedural 3D imaging (e.g., cone-beam CT) proved to be critical for ablation consistency. Conclusion: Bronchoscopy-guided MWA with an improved catheter designed for maximum power 120 W yields large ablations in normal porcine lung in vivo.

Details

Language :
English
ISSN :
22966870
Volume :
9
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Biomedicine Hub
Publication Type :
Academic Journal
Accession number :
edsdoj.09d83ca9cdbb4a6b9196462396418957
Document Type :
article
Full Text :
https://doi.org/10.1159/000539864