Back to Search Start Over

Predicting responses of the Adélie penguin population of Edmonson Point to future sea ice changes in the Ross Sea

Authors :
Tosca eBallerini
Giacomo eTavecchia
Francesco ePezzo
Stephanie eJenouvrier
Silvia eOlmastroni
Source :
Frontiers in Ecology and Evolution, Vol 3 (2015)
Publication Year :
2015
Publisher :
Frontiers Media S.A., 2015.

Abstract

Atmosphere-Ocean General Circulation Models (AOGCMs) predict changes in the sea ice environment and in atmospheric precipitations over larger areas of Antarctica. These changes are expected to affect the population dynamics of seabirds and marine mammals, but the extent of this influence is not clear. We investigated the future population trajectories of the colony of Adélie penguins at Edmonson Point, in the Ross Sea, from 2010 to 2100. To do so, we incorporated the relationship between sea ice and demographic parameters of the studied colony into a matrix population model. Specifically, we used sea ice projections from AOGCMs and a proxy for snowfall precipitation. Simulations of population persistence under future climate change scenarios showed that a reduction in sea ice extent and an increase in precipitation events during the breeding season will drive the population to extinction. However, the population growth rate estimated by the model was lower than the population growth rate observed during the last decades, suggesting that recruits from other colonies maintain the observed population dynamics at Edmonson Point. This local ‘rescue’ effect is consistent with a metapopulation dynamic for Adélie penguins in the Ross Sea, in which neighboring colonies might exhibit contrasting population trends and different density-dependent effects. In the hypothesis that connectivity with larger source colonies or that local recruitment would decrease, the sink colony at Edmonson Point is predicted to disappear.

Details

Language :
English
ISSN :
2296701X
Volume :
3
Database :
Directory of Open Access Journals
Journal :
Frontiers in Ecology and Evolution
Publication Type :
Academic Journal
Accession number :
edsdoj.09a84b6e7c2e48ceac6b5ab4618734c7
Document Type :
article
Full Text :
https://doi.org/10.3389/fevo.2015.00008