Back to Search Start Over

Disturbed neurovascular coupling in hemodialysis patients

Authors :
Mei Jin
Liyan Wang
Hao Wang
Xue Han
Zongli Diao
Wang Guo
Zhenghan Yang
Heyu Ding
Zheng Wang
Peng Zhang
Pengfei Zhao
Han Lv
Wenhu Liu
Zhenchang Wang
Source :
PeerJ, Vol 8, p e8989 (2020)
Publication Year :
2020
Publisher :
PeerJ Inc., 2020.

Abstract

Background Altered cerebral blood flow (CBF) and amplitude of low-frequency fluctuation (ALFF) have been reported in hemodialysis patients. However, neurovascular coupling impairments, which provide a novel insight into the human brain, have not been reported in hemodialysis patients. Methods We combined arterial spin labeling (ASL) and blood oxygen level dependent (BOLD) techniques to investigate neurovascular coupling alterations and its relationships with demographic and clinical data in 46 hemodialysis patients and 47 healthy controls. To explore regional neuronal activity, ALFF was obtained from resting-state functional MRI. To measure cerebral vascular response, CBF was calculated from ASL. The across-voxel CBF–ALFF correlations for global neurovascular coupling and CBF/ALFF ratio for regional neurovascular coupling were compared between hemodialysis patients and healthy controls. Two-sample t-tests were used to compare the intergroup differences in CBF and ALFF. Multiple comparisons were corrected using a voxel-wise false discovery rate (FDR) method (P < 0.05). Results All hemodialysis patients and healthy controls showed significant across-voxel correlations between CBF and ALFF. Hemodialysis patients showed a significantly reduced global CBF–ALFF coupling (P = 0.0011) compared to healthy controls at the voxel-level. Of note, decreased CBF/ALFF ratio was exclusively located in the bilateral amygdala involved in emotional regulation and cognitive processing in hemodialysis patients. In hemodialysis patients, the decreased CBF (right olfactory cortex, anterior cingulate gyrus and bilateral insula) and ALFF (bilateral precuneus and superior frontal gyrus) were mainly located in the default mode network and salience network-related regions as well as increased CBF in the bilateral thalamus. Conclusions These novel findings reveal that disrupted neurovascular coupling may be a potential neural mechanism in hemodialysis patients.

Details

Language :
English
ISSN :
21678359
Volume :
8
Database :
Directory of Open Access Journals
Journal :
PeerJ
Publication Type :
Academic Journal
Accession number :
edsdoj.0999e953ce1b489681684f0781f78480
Document Type :
article
Full Text :
https://doi.org/10.7717/peerj.8989