Back to Search Start Over

Novel Gold Nanoparticle-Based Quick Small-Exosome Isolation Technique from Serum Sample at a Low Centrifugal Force

Authors :
Krishna Thej Pammi Guru
Jamuna Surendran Sreeja
Dhrishya Dharmapal
Suparna Sengupta
Palash Kumar Basu
Source :
Nanomaterials, Vol 12, Iss 10, p 1660 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Exosomes are cell-secreted vesicles secreted by a majority of cells and, hence, populating most of the biological fluids, namely blood, tears, sweat, swab, urine, breast milk, etc. They vary vastly in size and density and are influenced by age, gender and diseases. The composition of exosomes includes lipids, DNA, proteins, and coding and noncoding RNA. There is a significant interest in selectively isolating small exosomes (≤50 nm) from human serum to investigate their role in different diseases and regeneration. However, current techniques for small exosome isolation/purification are time-consuming and highly instrument-dependent, with limited specificity and recovery. Thus, rapid and efficient methods to isolate them from bio fluids are strongly needed for both basic research and clinical applications. In the present work, we explored the application of a bench-top centrifuge for isolating mostly the small exosomes (≤50 nm). This can be achieved at low g-force by adding additional weight to the exosomes by conjugating them with citrate-capped gold nanoparticles (CGNP). CGNPs were functionalized with polyethylene glycol (PEG) to form PEGylated GNP (PGNP). EDC/SNHS chemistry is used to activate the –COOH group of the PEG to make it suitable for conjugation with antibodies corresponding to exosomal surface proteins. These antibody-conjugated PGNPs were incubated with the serum to form PGNP-exosome complexes which were separated directly by centrifugation at a low g-force of 7000× g. This makes this technique efficient compared to that of standard ultracentrifugation exosome isolation (which uses approximately 100,000× g). Using the technique, the exosome isolation from serum was achieved successfully in less than two hours. The purification of small exosomes, characterized by the presence of CD63, CD9 and CD81, and sized between 20 nm to 50 nm, was confirmed by western blot, dynamic light scattering (DLS), transmission electron microscopy (TEM) and nanoparticle tracking analyser (NTA).

Details

Language :
English
ISSN :
20794991
Volume :
12
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Nanomaterials
Publication Type :
Academic Journal
Accession number :
edsdoj.09529cad90974ae3ae71cd31f4663e7c
Document Type :
article
Full Text :
https://doi.org/10.3390/nano12101660