Back to Search Start Over

Huntingtin phosphorylation governs BDNF homeostasis and improves the phenotype of Mecp2 knockout mice

Authors :
Yann Ehinger
Julie Bruyère
Nicolas Panayotis
Yah‐Se Abada
Emilie Borloz
Valérie Matagne
Chiara Scaramuzzino
Hélène Vitet
Benoit Delatour
Lydia Saidi
Laurent Villard
Frédéric Saudou
Jean‐Christophe Roux
Source :
EMBO Molecular Medicine, Vol 12, Iss 2, Pp 1-13 (2020)
Publication Year :
2020
Publisher :
Springer Nature, 2020.

Abstract

Abstract Mutations in the X‐linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder for which there is no treatment. Several studies have linked the loss of MeCP2 function to alterations of brain‐derived neurotrophic factor (BDNF) levels, but non‐specific overexpression of BDNF only partially improves the phenotype of Mecp2‐deficient mice. We and others have previously shown that huntingtin (HTT) scaffolds molecular motor complexes, transports BDNF‐containing vesicles, and is under‐expressed in Mecp2 knockout brains. Here, we demonstrate that promoting HTT phosphorylation at Ser421, either by a phospho‐mimetic mutation or inhibition of the phosphatase calcineurin, restores endogenous BDNF axonal transport in vitro in the corticostriatal pathway, increases striatal BDNF availability and synaptic connectivity in vivo, and improves the phenotype and the survival of Mecp2 knockout mice—even though treatments were initiated only after the mice had already developed symptoms. Stimulation of endogenous cellular pathways may thus be a promising approach for the treatment of RTT patients.

Details

Language :
English
ISSN :
17574676 and 17574684
Volume :
12
Issue :
2
Database :
Directory of Open Access Journals
Journal :
EMBO Molecular Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.094d5708255640e8bd9f8ac0e89b5fea
Document Type :
article
Full Text :
https://doi.org/10.15252/emmm.201910889