Back to Search Start Over

Influence of Intact Mycelium of Arbuscular Mycorrhizal Fungi on Soil Microbiome Functional Profile in Wheat under Mn Stress

Authors :
Taiana A. Conceição
Galdino Andrade
Isabel Brito
Source :
Plants, Vol 11, Iss 19, p 2598 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

In the current agronomic context, the adoption of alternative forms of soil management is essential to increase crop yield. Agricultural sustainability requires practices that generate positive impacts and promote an increase in microbiome diversity as a tool to overcome adverse environmental conditions. An important ally is the indigenous arbuscular mycorrhizal fungi (AMF) that can improve plant growth and provide protection against abiotic stress such as metal toxicity. In a greenhouse experiment, this work studied the effect of wheat growth on several parameters of biological activity and functional microbiome in relation to wheat antecedent plant mycotrophy and soil disturbance under Mn stress. When the wheat was planted after highly mycotrophic plants and the soil was not previously disturbed, the results showed a 60% increase in wheat arbuscular colonization and a 2.5-fold increase in dry weight along with higher values of photosynthetic parameters and dehydrogenase activity. Conversely, soil disturbance before wheat planting increased the β-glucosidase activity and the count of manganese oxidizers, irrespectively of antecedent plant, and decreased drastically the wheat dry weight, the AMF colonization and the chlorophyll content compared to the undisturbed treatment. These findings suggest that not only the wheat growth but also the soil functional microbiome associated is affected by the antecedent type of plant and previous soil disturbance imposed. In addition, the improvement in wheat dry weight despite Mn toxicity may rely on shifts in biological activity associated to a well-established and intact ERM early developed in the soil.

Details

Language :
English
ISSN :
22237747
Volume :
11
Issue :
19
Database :
Directory of Open Access Journals
Journal :
Plants
Publication Type :
Academic Journal
Accession number :
edsdoj.0948cab4bea94d0a9fd7d85c20510aa0
Document Type :
article
Full Text :
https://doi.org/10.3390/plants11192598