Back to Search Start Over

Alfalfa with Forage Crop Rotation Alleviates Continuous Alfalfa Obstacles through Regulating Soil Enzymes and Bacterial Community Structures

Authors :
Yanxia Xu
Zhuxiu Liu
Zhongbao Shen
Zhao Yang
Xuepeng Fu
Xiaolong Wang
Shasha Li
Hua Chai
Ruoding Wang
Xiaobing Liu
Junjie Liu
Source :
Agronomy, Vol 14, Iss 7, p 1349 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Alfalfa is a perennial herbaceous forage legume that is significantly and adversely affected by monocropping. Crop rotation is the most effective measure to overcome continuous cropping obstacles. However, the mechanisms of how bacterial communities are affected and the potential links between these effects and cropping systems remain poorly understood. Based on a long-term field experiments with continuous alfalfa and forage crops with alfalfa rotation in the black soil region of the western Songnen Plain in Northeast China, the alterations in soil bacterial community structure using high-throughput sequencing of the 16S rRNA gene and soil chemical properties and enzyme activities were analyzed. The alfalfa–forage oats–silage maize–alfalfa and alfalfa–silage maize–forage oats–alfalfa system significantly increase the levels of total phosphorus and available phosphorus, and promote the activities of acid phosphatase, β-glucosidase, leucine aminopeptidase, and N-acetyl-β-glucosaminidase in comparison to continuous alfalfa. While alfalfa crop rotation did not affect the α-diversity of soil bacteria, it significantly altered the bacterial community composition and structure. Some key taxa are significantly enriched in the crop rotation system soils, including Bacillus, Sphingobium, Paenibacillus, Hydrogenispora, Rubrobacter, Haliangium, and Rubellimicrobium. Additionally, crop rotation with alfalfa increased the stability and complexity of the soil bacterial co-occurrence network. Based on our findings, we recommend promoting the alfalfa–forage oats–silage maize–alfalfa and alfalfa–silage maize–forage oats–alfalfa rotation systems as ideal practices for overcoming the challenges associated with continuous cropping of alfalfa. These systems not only enhance soil nutrient content and enzyme activities but also foster a beneficial microbial community, ultimately improving soil functionality and crop performance.

Details

Language :
English
ISSN :
20734395
Volume :
14
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Agronomy
Publication Type :
Academic Journal
Accession number :
edsdoj.0947dfdb46f14d5981fa3b07143eef62
Document Type :
article
Full Text :
https://doi.org/10.3390/agronomy14071349