Back to Search Start Over

Prolyl 4‐Hydroxylase Domain Protein 3 Overexpression Improved Obstructive Sleep Apnea—Induced Cardiac Perivascular Fibrosis Partially by Suppressing Endothelial‐to‐Mesenchymal Transition

Authors :
Guang‐hao Zhang
Fu‐chao Yu
Yang Li
Qin Wei
Song‐song Song
Fang‐ping Zhou
Jia‐yi Tong
Source :
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, Vol 6, Iss 10 (2017)
Publication Year :
2017
Publisher :
Wiley, 2017.

Abstract

BackgroundIntermittent hypoxia (IH) induced by obstructive sleep apnea is the key factor involved in cardiovascular fibrosis. Under persistent hypoxia condition, endothelial cells respond by endothelial‐to‐mesenchymal transition (EndMT), which is associated with cardiovascular fibrosis. Prolyl 4‐hydroxylase domain protein 3 (PHD3) is a cellular oxygen sensor and its expression increased in hypoxia. However, its role in obstructive sleep apnea–induced EndMT and cardiovascular fibrosis is still uncertain. We investigated the potential mechanism of obstructive sleep apnea–induced cardiac perivascular fibrosis and the role of PHD3 in it. Methods and ResultsIn vivo, C56BL/6 mice were exposed to IH for 12 weeks. PHD3 expression was changed by lentivirus‐mediated short‐hairpin PHD3 and lentivirus carrying PHD3 cDNA. EndMT related protein levels, histological and functional parameters were detected after 12 weeks. In vitro, human umbilical vein endothelial cells were treated with IH/short‐hairpin PHD3/lentivirus carrying PHD3 cDNA to explore the mechanism of PHD3 in altered function of human umbilical vein endothelial cells. We found that chronic intermittent hypoxia increase PHD3 expression and EndMT. In vivo, IH accelerate cardiac dysfunction and aggravate collagen deposition via the process of EndMT. And, when PHD3 were overexpressed, cardiac dysfunction and collagen excessive deposition were improved. In vitro, IH induced EndMT, which endow human umbilical vein endothelial cells spindle morphology and an enhanced ability to migration and collagen secretion. PHD3 overexpression in cultured human umbilical vein endothelial cells ameliorated IH–induced EndMT through inactivating hypoxia‐inducible factor 1 alpha and small mothers against decapentaplegic 2 and 3. ConclusionsObstructive sleep apnea–induced cardiac perivascular fibrosis is associated with EndMT, and PHD3 overexpression might be beneficial in the prevention of it by inhibiting EndMT. PHD3 overexpression might have therapeutic potential in the treatment of the disease.

Details

Language :
English
ISSN :
20479980
Volume :
6
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
Publication Type :
Academic Journal
Accession number :
edsdoj.09380df357494fa2994761ae3d1b7f67
Document Type :
article
Full Text :
https://doi.org/10.1161/JAHA.117.006680