Back to Search
Start Over
Elevated inorganic carbon and salinity enhances photosynthesis and ATP synthesis in picoalga Picocystis salinarum as revealed by label free quantitative proteomics
- Source :
- Frontiers in Microbiology, Vol 14 (2023)
- Publication Year :
- 2023
- Publisher :
- Frontiers Media S.A., 2023.
-
Abstract
- Saline soda lakes are of immense ecological value as they niche some of the most exclusive haloalkaliphilic communities dominated by bacterial and archaeal domains, with few eukaryotic algal representatives. A handful reports describe Picocystis as a key primary producer with great production rates in extremely saline alkaline habitats. An extremely haloalkaliphilic picoalgal strain, Picocystis salinarum SLJS6 isolated from hypersaline soda lake Sambhar, Rajasthan, India, grew robustly in an enriched soda lake medium containing mainly Na2CO3, 50 g/l; NaHCO3, 50 g/l, NaCl, 50 g/l (salinity ≈150‰) at pH 10. To elucidate the molecular basis of such adaptation to high inorganic carbon and NaCl concentrations, a high-throughput label-free quantitation based quantitative proteomics approach was applied. Out of the total 383 proteins identified in treated samples, 225 were differentially abundant proteins (DAPs), of which 150 were statistically significant (p
Details
- Language :
- English
- ISSN :
- 1664302X
- Volume :
- 14
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Microbiology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.09349b917654fbbaa4912699d16edcd
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fmicb.2023.1059199