Back to Search Start Over

Are We There Yet? The Value of Deep Learning in a Multicenter Setting for Response Prediction of Locally Advanced Rectal Cancer to Neoadjuvant Chemoradiotherapy

Authors :
Barbara D. Wichtmann
Steffen Albert
Wenzhao Zhao
Angelika Maurer
Claus Rödel
Ralf-Dieter Hofheinz
Jürgen Hesser
Frank G. Zöllner
Ulrike I. Attenberger
Source :
Diagnostics, Vol 12, Iss 7, p 1601 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

This retrospective study aims to evaluate the generalizability of a promising state-of-the-art multitask deep learning (DL) model for predicting the response of locally advanced rectal cancer (LARC) to neoadjuvant chemoradiotherapy (nCRT) using a multicenter dataset. To this end, we retrained and validated a Siamese network with two U-Nets joined at multiple layers using pre- and post-therapeutic T2-weighted (T2w), diffusion-weighted (DW) images and apparent diffusion coefficient (ADC) maps of 83 LARC patients acquired under study conditions at four different medical centers. To assess the predictive performance of the model, the trained network was then applied to an external clinical routine dataset of 46 LARC patients imaged without study conditions. The training and test datasets differed significantly in terms of their composition, e.g., T-/N-staging, the time interval between initial staging/nCRT/re-staging and surgery, as well as with respect to acquisition parameters, such as resolution, echo/repetition time, flip angle and field strength. We found that even after dedicated data pre-processing, the predictive performance dropped significantly in this multicenter setting compared to a previously published single- or two-center setting. Testing the network on the external clinical routine dataset yielded an area under the receiver operating characteristic curve of 0.54 (95% confidence interval [CI]: 0.41, 0.65), when using only pre- and post-therapeutic T2w images as input, and 0.60 (95% CI: 0.48, 0.71), when using the combination of pre- and post-therapeutic T2w, DW images, and ADC maps as input. Our study highlights the importance of data quality and harmonization in clinical trials using machine learning. Only in a joint, cross-center effort, involving a multidisciplinary team can we generate large enough curated and annotated datasets and develop the necessary pre-processing pipelines for data harmonization to successfully apply DL models clinically.

Details

Language :
English
ISSN :
20754418
Volume :
12
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Diagnostics
Publication Type :
Academic Journal
Accession number :
edsdoj.0923f0a97441487b72f01852e2b8e
Document Type :
article
Full Text :
https://doi.org/10.3390/diagnostics12071601