Back to Search
Start Over
CryoTRANS: predicting high-resolution maps of rare conformations from self-supervised trajectories in cryo-EM
- Source :
- Communications Biology, Vol 7, Iss 1, Pp 1-12 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Cryogenic electron microscopy (cryo-EM) has revolutionized structural biology, enabling efficient determination of structures at near-atomic resolutions. However, a common challenge arises from the severe imbalance among various conformations of vitrified particles, leading to low-resolution reconstructions in rare conformations due to a lack of particle images in these quasi-stable states. We introduce CryoTRANS, a method that predicts high-resolution maps of rare conformations by constructing a self-supervised pseudo-trajectory between density maps of varying resolutions. This trajectory is represented by an ordinary differential equation parameterized by a deep neural network, ensuring retention of detailed structures from high-resolution density maps. By leveraging a single high-resolution density map, CryoTRANS significantly improves the reconstruction of rare conformations and has been validated on four real-world datasets: alpha-2-macroglobulin, actin-binding protein complexes, SARS-CoV-2 spike glycoprotein, and the 70S ribosome. CryoTRANS can also predict high-resolution structures in cryogenic electron tomography maps using a high-resolution cryo-EM map.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 23993642
- Volume :
- 7
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.0898da9d21ec4f18b3ab76f6aa229b4a
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s42003-024-06739-9