Back to Search Start Over

Genome-wide analysis of DNA methylation identifies novel differentially methylated regions associated with lipid accumulation improved by ethanol extracts of Allium tubersosum and Capsella bursa-pastoris in a cell model.

Authors :
Moonju Hong
Jin-Taek Hwang
Eun Ju Shin
Haeng Jeon Hur
Keunsoo Kang
Hyo-Kyoung Choi
Min-Yu Chung
Sangwon Chung
Mi Jeong Sung
Jae-Ho Park
Source :
PLoS ONE, Vol 14, Iss 6, p e0217877 (2019)
Publication Year :
2019
Publisher :
Public Library of Science (PLoS), 2019.

Abstract

Hepatic steatosis is the most common chronic liver disease in Western countries. Both genetic and environmental factors are known as causes of the disease although their underlying mechanisms have not been fully understood. This study investigated the association of DNA methylation with oleic acid-induced hepatic steatosis. It also examined effects of food components on DNA methylation in hepatic steatosis. Genome-wide DNA methylation of oleic acid (OA)-induced lipid accumulation in vitro cell model was investigated using reduced representation bisulfite sequencing. Changes of DNA methylation were also analyzed after treatment with food components decreasing OA-induced lipid accumulation in the model. We identified total 81 regions that were hypermethylated by OA but hypomethylated by food components or vice versa. We determined the expression of seven genes proximally located at the selected differentially methylated regions. Expression levels of WDR27, GNAS, DOK7, MCF2L, PRKG1, and CMYA5 were significantly different between control vs OA and OA vs treatment with food components. We demonstrated that DNA methylation was associated with expression of genes in the model of hepatic steatosis. We also found that food components reversely changed DNA methylation induced by OA and alleviated lipid accumulation. These results suggest that DNA methylation is one of the mechanisms causing the hepatic steatosis and its regulation by food components provides insights that may prevent or alleviate lipid accumulation.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
6
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.08966da3b94b4a59b28e70a3ac4e53c3
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0217877