Back to Search Start Over

Preparation of Micro-Nano Material Composed of Oyster Shell/Fe3O4 Nanoparticles/Humic Acid and Its Application in Selective Removal of Hg(II)

Authors :
Chuxian He
Junhao Qu
Zihua Yu
Daihuan Chen
Tiantian Su
Lei He
Zike Zhao
Chunxia Zhou
Pengzhi Hong
Yong Li
Shengli Sun
Chengyong Li
Source :
Nanomaterials, Vol 9, Iss 7, p 953 (2019)
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

Micro-nano composite material was prepared to adsorb Hg(II) ions via the co-precipitation method. Oyster shell (OS), Fe3O4 nanoparticles, and humic acid (HA) were used as the raw materials. The adhesion of nanoparticles to OS displayed by scanning electron microscopy (SEM), the appearance of the (311) plane of standard Fe3O4 derived from X-ray diffraction (XRD), and the transformation of pore sizes to 50 nm and 20 μm by mercury intrusion porosimetry (MIP) jointly revealed the successful grafting of HA-functionalized Fe3O4 onto the oyster shell surface. The vibrating sample magnetometer (VSM) results showed superparamagnetic properties of the novel adsorbent. The adsorption mechanism was investigated based on X-ray photoelectron spectroscopy (XPS) techniques, which showed the process of physicochemical adsorption while mercury was adsorbed as Hg(II). The effects of pH (3−7), initial solution concentration (2.5−30 mg·L−1), and contact time (0−5 h) on the adsorption of Hg(II) ions were studied in detail. The experimental data were well fitted to the Langmuir isotherm equation (R2 = 0.991) and were shown to follow a pseudo-second-order reaction model (R2 = 0.998). The maximum adsorption capacity of Hg(II) was shown to be 141.57 mg·g−1. In addition, this new adsorbent exhibited excellent selectivity.

Details

Language :
English
ISSN :
20794991
Volume :
9
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Nanomaterials
Publication Type :
Academic Journal
Accession number :
edsdoj.085e9dd4b984a82beb86b6eaff03044
Document Type :
article
Full Text :
https://doi.org/10.3390/nano9070953