Back to Search Start Over

Effect of Ti-Al cathode grain size on plasma generation and thin film synthesis from a direct current vacuum arc plasma source

Authors :
Igor Zhirkov
Andrejs Petruhins
Peter Polcik
Szilard Kolozsvári
Johanna Rosen
Source :
AIP Advances, Vol 9, Iss 4, Pp 045008-045008-9 (2019)
Publication Year :
2019
Publisher :
AIP Publishing LLC, 2019.

Abstract

Herein, we investigate the influence of powder metallurgical manufactured Ti0.5Al0.5 cathode grain size (45-150 μm) on the properties of a DC arc discharge, for N2 pressures in the range 10-5 Torr (base pressure) up to 3x10-2 Torr. Intermetallic TiAl cathodes are also studied. The arc plasma is characterized with respect to ion composition, ion charge state, and ion energy, and is found to change with pressure, independent on choice of cathode. Scanning electron microscopy, X-ray diffraction, and Energy-dispersive X-ray spectroscopy of the cathode surfaces and the concurrently deposited films are used for exploring the correlation between cathode-, plasma-, and film composition. The plasma has a dominating Al ion content at elevated pressures, while the film composition is consistent with the cathode composition, independent on cathode grain size. Cross-sections of the used cathodes are studied, and presence of a converted layer, up to 10 μm, is shown, with an improved intermixing of the elements on the cathode surface. This layer is primarily explained by condensation of cathode material from the melting and splashes accompanying the arc spot movement, as well as generated plasma ions being redeposited upon returning to the cathode. The overall lack of dependence on grain size is likely due to similar physical properties of Ti, Al and TiAl grains, as well as the formation of a converted layer. The presented findings are of importance for large scale manufacturing and usage of Ti-Al cathodes in industrial processes.

Subjects

Subjects :
Physics
QC1-999

Details

Language :
English
ISSN :
21583226
Volume :
9
Issue :
4
Database :
Directory of Open Access Journals
Journal :
AIP Advances
Publication Type :
Academic Journal
Accession number :
edsdoj.082011511492422d817554f0c8713e84
Document Type :
article
Full Text :
https://doi.org/10.1063/1.5092864