Back to Search Start Over

Longitudinal Analysis of Corneal Biomechanics of Suspect Keratoconus: A Prospective Case-Control Study

Authors :
Yan Huo
Xuan Chen
Ruisi Xie
Jing Li
Yan Wang
Source :
Bioengineering, Vol 11, Iss 5, p 420 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Background: To evaluate the corneal biomechanics of stable keratoconus suspects (Stable-KCS) at 1-year follow-up and compare them with those of subclinical keratoconus (SKC). Methods: This prospective case-control study included the eyes of 144 patients. Biomechanical and tomographic parameters were recorded (Corvis ST and Pentacam). Patients without clinical signs of keratoconus in both eyes but suspicious tomography findings were included in the Stable-KCS group (n = 72). Longitudinal follow-up was used to evaluate Stable-KCS changes. Unilateral keratoconus contralateral eyes with suspicious tomography were included in the SKC group (n = 72). T-tests and non-parametric tests were used for comparison. Multivariate general linear models were used to adjust for confounding factors for further analysis. Receiver operating characteristic (ROC) curves were used to analyze the distinguishability. Results: The biomechanical and tomographic parameters of Stable-KCS showed no progression during the follow-up time (13.19 ± 2.41 months, p > 0.05). Fifteen biomechanical parameters and the Stress–Strain Index (SSI) differed between the two groups (p < 0.016). The A1 dArc length showed the strongest distinguishing ability (area under the ROC = 0.888) between Stable-KCS and SKC, with 90.28% sensitivity and 77.78% specificity at the cut-off value of −0.0175. Conclusions: The A1 dArc length could distinguish between Stable-KCS and SKC, indicating the need to focus on changes in the A1 dArc length for keratoconus suspects during the follow-up period. Although both have abnormalities on tomography, the corneal biomechanics and SSI of Stable-KCS were stronger than those of SKC, which may explain the lack of progression of Stable-KCS.

Details

Language :
English
ISSN :
23065354
Volume :
11
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Bioengineering
Publication Type :
Academic Journal
Accession number :
edsdoj.081b464261491faf2360b5b81d4c58
Document Type :
article
Full Text :
https://doi.org/10.3390/bioengineering11050420