Back to Search Start Over

On Convexity, Monotonicity and Positivity Analysis for Discrete Fractional Operators Defined Using Exponential Kernels

Authors :
Pshtiwan Othman Mohammed
Ohud Almutairi
Ravi P. Agarwal
Y. S. Hamed
Source :
Fractal and Fractional, Vol 6, Iss 2, p 55 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

This article deals with analysing the positivity, monotonicity and convexity of the discrete nabla fractional operators with exponential kernels from the sense of Riemann and Caputo operators. These operators are called discrete nabla Caputo–Fabrizio–Riemann and Caputo–Fabrizio–Caputo fractional operators. Further, some of our results concern sequential nabla Caputo–Fabrizio–Riemann and Caputo–Fabrizio–Caputo fractional differences, such as ∇aCFRμ∇bCFCυh(x), for various values of start points a and b, and for orders υ and μ in different ranges. Three illustrative examples of the main lemmas in the case of Riemann–Liouville are given at the end of the article.

Details

Language :
English
ISSN :
25043110
Volume :
6
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Fractal and Fractional
Publication Type :
Academic Journal
Accession number :
edsdoj.080ba70b96f467eb0b6d44206b271bb
Document Type :
article
Full Text :
https://doi.org/10.3390/fractalfract6020055