Back to Search
Start Over
Role of NADPH Oxidase-Derived ROS-Mediated IL-6/STAT3 and MAPK/NF-κB Signaling Pathways in Protective Effect of Corilagin against Acetaminophen-Induced Liver Injury in Mice
- Source :
- Biology, Vol 12, Iss 2, p 334 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Acetaminophen (APAP) overdose causes acute liver injury via oxidative stress, uncontrolled inflammatory response, and subsequent hepatocyte death. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a potent source of cellular reactive oxygen species (ROS) and may contribute to oxidative stress in many inflammatory processes. Corilagin, a component of Phyllanthus urinaria, possesses antioxidant, anti-inflammatory, and hepatoprotective effects. We evaluated the mechanisms underlying the protective effect of corilagin against acetaminophen-induced liver injury. Mice were intraperitoneally administrated 300 mg/kg APAP or equal volume of saline (control), with or without various concentrations of corilagin (0, 1, 5, or 10 mg/kg) administered after 30 min. All animals were sacrificed 16 h after APAP administration, and serum and liver tissue assays including histology, immunohistochemistry, and Western blot assay were performed. Corilagin post-treatment significantly attenuated APAP-induced liver injury (p < 0.005), inflammatory cell infiltration, hepatic proinflammatory cytokine levels, and hepatic oxidative stress. Furthermore, corilagin attenuated the protein levels of NOX1, NOX2, signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) in APAP-induced liver injury. These results indicated that the antioxidant, anti-inflammatory, and protective effects of corilagin in APAP-induced liver injury might involve the regulation of interleukin (IL)-6/STAT3 and mitogen-activated protein kinase (MAPK)/NF-κB signaling pathways through NOX-derived ROS.
Details
- Language :
- English
- ISSN :
- 20797737
- Volume :
- 12
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.07f26bea4a584bd185dcf5e15dfefcc9
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/biology12020334