Back to Search Start Over

CYP1B1 inhibits ferroptosis and induces anti-PD-1 resistance by degrading ACSL4 in colorectal cancer

Authors :
Congcong Chen
Yabing Yang
Yanguan Guo
Jiashuai He
Zuyang Chen
Shenghui Qiu
Yiran Zhang
Hui Ding
Jinghua Pan
Yunlong Pan
Source :
Cell Death and Disease, Vol 14, Iss 4, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Publishing Group, 2023.

Abstract

Abstract Immune checkpoint blockade (ICB) is a promising treatment strategy for colorectal cancer (CRC) patients. However, most CRC patients do not response well to ICB therapy. Increasing evidence indicates that ferroptosis plays a critical role in immunotherapy. ICB efficacy may be enhanced by inducing tumor ferroptosis. Cytochrome P450 1B1 (CYP1B1) is a metabolic enzyme that participates in arachidonic acid metabolism. However, the role of CYP1B1 in ferroptosis remains unclear. In this study, we demonstrated that CYP1B1 derived 20-HETE activated the protein kinase C pathway to increase FBXO10 expression, which in turn promoted the ubiquitination and degradation of acyl-CoA synthetase long-chain family member 4 (ACSL4), ultimately inducing tumor cells resistance to ferroptosis. Furthermore, inhibiting CYP1B1 sensitized tumor cells to anti-PD-1 antibody in a mouce model. In addition, CYP1B1 expression was negatively correlated with ACSL4 expression, and high expression indicates poor prognosis in CRC. Taken together, our work identified CYP1B1 as a potential biomarker for enhancing anti-PD-1 therapy in CRC.

Subjects

Subjects :
Cytology
QH573-671

Details

Language :
English
ISSN :
20414889
Volume :
14
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Cell Death and Disease
Publication Type :
Academic Journal
Accession number :
edsdoj.07eefdfe92474bb70e0e82e1f582b4
Document Type :
article
Full Text :
https://doi.org/10.1038/s41419-023-05803-2