Back to Search
Start Over
Guanosine and Deoxyinosine Structural Analogs Extracted from Chick Early Amniotic Fluid Promote Cutaneous Wound Healing
- Source :
- International Journal of Molecular Sciences, Vol 24, Iss 16, p 12817 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Wound healing is a complex, dynamic process supported by a myriad of cellular events that must be tightly coordinated to efficiently repair damaged tissue. These wounds are a significant socioeconomic burden due to their high prevalence and recurrence, which is why the phenomenon of wounds has also been labeled as a “Silent Epidemic”. Most of these wounds become “chronic”, with around 15% of them remaining unresolved 1-year post incidence, which results in a prolonged yet avoidable burden to patients, families, and the health system. In this experimental study, we tried to purify the potent components in chick early amniotic fluid (ceAF) and applied these components to the wound healing mechanism. We first subjected ceAF to a series of purifications, including an HPLC purification system along with ion-exchange chromatography technology to purify other potential components. Upon narrowing down, we found two structural analogs: guanosine and deoxyinosine. We performed these components’ cell scratch and trans-well migration assays to validate the accurate dosage. We also assessed these components via topical administration on the skin of murine model wounds. For this, we randomly divided C57BL/6 (all black, male, 5 weeks old) mice into groups. The wound model was established through excising the skin of mice and treated the wounds with different fractions of guanosine and deoxyinosine continuously for 8–10 day intervals. Once the healing was complete, the skin was excised to determine the inflammatory response and other biochemical parameters of the healed skin, including epidermal thickness, collagen density, macrophages, and neutrophil infiltration at the wounded site. Quantitative real-time PCR and immunoblot assays were performed to determine active gene expression and protein expression of proinflammatory molecules, growth factors, and cytokines. All these findings support our data indicating the promising healing properties of guanosine and deoxyinosine isolated from ceAF.
Details
- Language :
- English
- ISSN :
- 14220067 and 16616596
- Volume :
- 24
- Issue :
- 16
- Database :
- Directory of Open Access Journals
- Journal :
- International Journal of Molecular Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.07cb889e40b14d05927f475fcd94860d
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/ijms241612817