Back to Search Start Over

The relationship between TMCO1 and CALR in the pathological characteristics of prostate cancer and its effect on the metastasis of prostate cancer cells

Authors :
Dong Jingting
Kang Shaosan
Cao Fenghong
Chen Xi
Wang Xiaofei
Wang Lei
Wang Qing
Zhai Yupu
Source :
Open Life Sciences, Vol 19, Iss 1, Pp 209-49 (2024)
Publication Year :
2024
Publisher :
De Gruyter, 2024.

Abstract

Calcium homeostasis is correlated closely with the occurrence and development of various cancers. The role of calcium homeostasis in prostate cancer has remained unclear. The present study aimed to investigate the relationship between transmembrane and crimp-crimp domain 1 (TMCO1) and calreticulin (CALR) in the pathological characteristics of prostate cancer and the mechanism of action on prostate cancer metastasis. Effects of CALR recombinant protein and TMCO1 knockdown on prostate cancer cells were investigated using following methods: cell cloning, Transwell, wound scratch assay, JC-1 assay, Fluo-4 Assay, endoplasmic reticulum (ER) fluorescent probe, mitochondrial fluorescence probe, Western blot and Immunofluorescence. TMCO1 and CALR are overexpressed in prostate cancer and knockdown of TMCO1 significantly inhibited the invasion, migration and cell proliferation. Furthermore, knocking down TMCO1 modulated the intensity of ER probes and mitochondrial fluorescence probes, and affected the levels of intracellular calcium ion and mitochondrial membrane potential. In addition, CALR recombinant protein upregulated the expression of epithelial-mesenchymal transition marker, Vimentin, Conversely, knockout of TMCO1 significantly reduced the expression of CALR and Vimentin. Knockout of TMCO1 can reverse the effect of CALR recombinant protein, elucidating the pivotal roles of TMCO1 and CALR in the regulation of prostate cancer metastasis through modulation of calcium homeostasis.

Details

Language :
English
ISSN :
23915412
Volume :
19
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Open Life Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.07badb8423f9496eb677789bbf28b602
Document Type :
article
Full Text :
https://doi.org/10.1515/biol-2022-0972