Back to Search Start Over

The COVID-19 Drug and Gene Set Library

Authors :
Maxim V. Kuleshov
Daniel J. Stein
Daniel J.B. Clarke
Eryk Kropiwnicki
Kathleen M. Jagodnik
Alon Bartal
John E. Evangelista
Jason Hom
Minxuan Cheng
Allison Bailey
Abigail Zhou
Laura B. Ferguson
Alexander Lachmann
Avi Ma'ayan
Source :
Patterns, Vol 1, Iss 6, Pp 100090- (2020)
Publication Year :
2020
Publisher :
Elsevier, 2020.

Abstract

Summary: In a short period, many research publications that report sets of experimentally validated drugs as potential COVID-19 therapies have emerged. To organize this accumulating knowledge, we developed the COVID-19 Drug and Gene Set Library (https://amp.pharm.mssm.edu/covid19/), a collection of drug and gene sets related to COVID-19 research from multiple sources. The platform enables users to view, download, analyze, visualize, and contribute drug and gene sets related to COVID-19 research. To evaluate the content of the library, we compared the results from six in vitro drug screens for COVID-19 repurposing candidates. Surprisingly, we observe low overlap across screens while highlighting overlapping candidates that should receive more attention as potential therapeutics for COVID-19. Overall, the COVID-19 Drug and Gene Set Library can be used to identify community consensus, make researchers and clinicians aware of new potential therapies, enable machine-learning applications, and facilitate the research community to work together toward a cure. The Bigger Picture: The COVID-19 pandemic requires rapid response by the research community to develop vaccines and therapeutics. While the development of vaccines may take years, drug repurposing can offer pandemic mitigation much quicker. In vitro drug screening is the first step toward identifying and prioritizing potential safe therapeutics for COVID-19. However, these screens are done by different laboratories across the world using different methods. As a result, these screens produce different lists of hits. Here, we attempted to consolidate the results from these drug screens to find out whether consensus emerges. In addition, we utilized machine-learning methods to further predict and prioritize the validity of the hits from these drug screens. Such analysis identified molecular mechanisms that may explain how some of these drugs interfere with viral replication inside human cells. As more SARS-CoV-2 drug screens are published, a clearer picture of the most promising drug candidates is expected to emerge.

Details

Language :
English
ISSN :
26663899
Volume :
1
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Patterns
Publication Type :
Academic Journal
Accession number :
edsdoj.0770e77182d4163a300b5853cf20ce5
Document Type :
article
Full Text :
https://doi.org/10.1016/j.patter.2020.100090