Back to Search Start Over

A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags

Authors :
Andreas Müller
Martin Neukam
Anna Ivanova
Anke Sönmez
Carla Münster
Susanne Kretschmar
Yannis Kalaidzidis
Thomas Kurth
Jean-Marc Verbavatz
Michele Solimena
Source :
Scientific Reports, Vol 7, Iss 1, Pp 1-13 (2017)
Publication Year :
2017
Publisher :
Nature Portfolio, 2017.

Abstract

Abstract Correlative light and electron microscopy (CLEM) is a powerful approach to investigate the molecular ultrastructure of labeled cell compartments. However, quantitative CLEM studies are rare, mainly due to small sample sizes and the sensitivity of fluorescent proteins to strong fixatives and contrasting reagents for EM. Here, we show that fusion of a self-labeling protein to insulin allows for the quantification of age-distinct insulin granule pools in pancreatic beta cells by a combination of super resolution and transmission electron microscopy on Tokuyasu cryosections. In contrast to fluorescent proteins like GFP organic dyes covalently bound to self-labeling proteins retain their fluorescence also in epoxy resin following high pressure freezing and freeze substitution, or remarkably even after strong chemical fixation. This enables for the assessment of age-defined granule morphology and degradation. Finally, we demonstrate that this CLEM protocol is highly versatile, being suitable for single and dual fluorescent labeling and detection of different proteins with optimal ultrastructure preservation and contrast.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.069d03a33d2f4c818999027d415bc62e
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-017-00033-x