Back to Search Start Over

Hot Spots Drift in Synchronous and Asynchronous Polars: Results of Three-Dimensional Numerical Simulation

Authors :
Dmitry Bisikalo
Andrey Sobolev
Andrey Zhilkin
Source :
Galaxies, Vol 9, Iss 4, p 110 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

In this paper, the characteristics of hot spots on an accretor surface are investigated for two types of polars: the eclipsing synchronous polar V808 Aur and the non-eclipsing asynchronous polar CD Ind in configuration of an offset and non-offset magnetic dipole. The drift of hot spots is analyzed based on the results of numerical calculations and maps of the temperature distribution over the accretor surface. It is shown that a noticeable displacement of the spots is determined by the ratio of ballistic and magnetic parts of the jet trajectory. In the synchronous polar, the dominant influence on the drift of hot spots is exerted by variations in the mass transfer rate, which entail a change in the ballistic part of the trajectory. It was found that when the mass transfer rate changes within the range of 10−10M⊙/year to 10−7M⊙/year, the displacement of the hot spot in latitude and longitude can reach 30∘. In the asynchronous polar, a change in the position of hot spots is mainly defined by the properties of the white dwarf magnetosphere, and the displacement of hot spots in latitude and longitude can reach 20∘.

Details

Language :
English
ISSN :
20754434
Volume :
9
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Galaxies
Publication Type :
Academic Journal
Accession number :
edsdoj.0648c46b4c394655a6ae4e9d34ea6500
Document Type :
article
Full Text :
https://doi.org/10.3390/galaxies9040110