Back to Search Start Over

F420H2-dependent degradation of aflatoxin and other furanocoumarins is widespread throughout the actinomycetales.

Authors :
Gauri V Lapalikar
Matthew C Taylor
Andrew C Warden
Colin Scott
Robyn J Russell
John G Oakeshott
Source :
PLoS ONE, Vol 7, Iss 2, p e30114 (2012)
Publication Year :
2012
Publisher :
Public Library of Science (PLoS), 2012.

Abstract

Two classes of F(420)-dependent reductases (FDR-A and FDR-B) that can reduce aflatoxins and thereby degrade them have previously been isolated from Mycobacterium smegmatis. One class, the FDR-A enzymes, has up to 100 times more activity than the other. F(420) is a cofactor with a low reduction potential that is largely confined to the Actinomycetales and some Archaea and Proteobacteria. We have heterologously expressed ten FDR-A enzymes from diverse Actinomycetales, finding that nine can also use F(420)H(2) to reduce aflatoxin. Thus FDR-As may be responsible for the previously observed degradation of aflatoxin in other Actinomycetales. The one FDR-A enzyme that we found not to reduce aflatoxin belonged to a distinct clade (herein denoted FDR-AA), and our subsequent expression and analysis of seven other FDR-AAs from M. smegmatis found that none could reduce aflatoxin. Certain FDR-A and FDR-B enzymes that could reduce aflatoxin also showed activity with coumarin and three furanocoumarins (angelicin, 8-methoxysporalen and imperatorin), but none of the FDR-AAs tested showed any of these activities. The shared feature of the compounds that were substrates was an α,β-unsaturated lactone moiety. This moiety occurs in a wide variety of otherwise recalcitrant xenobiotics and antibiotics, so the FDR-As and FDR-Bs may have evolved to harness the reducing power of F(420) to metabolise such compounds. Mass spectrometry on the products of the FDR-catalyzed reduction of coumarin and the other furanocoumarins shows their spontaneous hydrolysis to multiple products.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
7
Issue :
2
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.06358edfb8334964a2b5d9f0fbc2ed11
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0030114