Back to Search Start Over

Liquid NanoBiosensors Enable One‐Pot Electrochemical Detection of Bacteria in Complex Matrices

Authors :
Sara M. Imani
Enas Osman
Fatemeh Bakhshandeh
Shuwen Qian
Sadman Sakib
Michael MacDonald
Mark Gaskin
Igor Zhitomirsky
Deborah Yamamura
Yingfu Li
Tohid F. Didar
Leyla Soleymani
Source :
Advanced Science, Vol 10, Iss 19, Pp n/a-n/a (2023)
Publication Year :
2023
Publisher :
Wiley, 2023.

Abstract

Abstract There is a need for point‐of‐care bacterial sensing and identification technologies that are rapid and simple to operate. Technologies that do not rely on growth cultures, nucleic acid amplification, step‐wise reagent addition, and complex sample processing are the key for meeting this need. Herein, multiple materials technologies are integrated for overcoming the obstacles in creating rapid and one‐pot bacterial sensing platforms. Liquid‐infused nanoelectrodes are developed for reducing nonspecific binding on the transducer surface; bacterium‐specific RNA‐cleaving DNAzymes are used for bacterial identification; and redox DNA barcodes embedded into DNAzymes are used for binding‐induced electrochemical signal transduction. The resultant single‐step and one‐pot assay demonstrates a limit‐of‐detection of 102 CFU mL−1, with high specificity in identifying Escherichia coli amongst other Gram positive and negative bacteria including Klebsiella pneumoniae, Staphylococcus aureus, and Bacillus subtilis. Additionally, this assay is evaluated for analyzing 31 clinically obtained urine samples, demonstrating a clinical sensitivity of 100% and specify of 100%. When challenging this assay with nine clinical blood cultures, E. coli‐positive and E. coli‐negative samples can be distinguished with a probability of p

Details

Language :
English
ISSN :
21983844
Volume :
10
Issue :
19
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.0630a6efdd384e0593a7d57378f862a7
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202207223