Back to Search Start Over

Divergent Deborah number-dependent transition from homogeneity to heterogeneity

Authors :
Dan Xu
Yang Yang
Lukas Emmerich
Yong Wang
Kai Zhang
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Heterogeneous structures are ubiquitous in natural organisms. Native heterogeneous structures inspire many artificial structures that are playing important roles in modern society, while it is challenging to identify the relevant factors in forming these structures due to the complexity of living systems. Here, hybrid hydrogels consisting of flexible polymer networks with embedded stiff cellulose nanocrystals (CNCs) are considered an open system to simulate the generalized formation of heterogeneous core-sheath structures. As the result of the modified air drying process of hybrid hydrogels, the formation of heterogeneous core-sheath structure is found to be correlated to the relative evaporation speed. Specifically, the formation of such heterogeneity in xerogel fibers is found to be correlated with the divergence of Deborah number (De). During the transition of De from large to small values with accompanying morphologies, the turning point is around De = 1. The mechanism can be considered a relative humidity-dependent glass transition behavior. These unique heterogeneous structures play a key role in tuning water permeation and water sorption capacity. Insights into these aspects can prospectively contribute to a better understanding of the native heterogeneous structures for bionics design.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.05ef1b0614fd490523c996febaa86
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-41738-0